If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+2m=0
a = 7; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·7·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*7}=\frac{-4}{14} =-2/7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*7}=\frac{0}{14} =0 $
| -3(2x-(x+4))=6-4x | | 4/5x-8=18/20x+5 | | -3(2x-(x+4)=6-4x | | −2(-4+6x)=1−3x+2−3(x+9) | | 7p+3=3p-12+p | | 7(w+6)=49 | | 6+3x-39=180 | | Y=-10x+216 | | -2q2+-9q+-4=0 | | 210=7x=43 | | 4(w+6)=36 | | 253=7x-43 | | x^2-x-1=-6x-1 | | -11x+27x-6.8=5.2 | | 253=7x=43 | | -4(x-4)=-16 | | (2x+2)+(2x-7)+x=180 | | 2x+13-8x-41=180 | | 3+x-8/3=0 | | 71+(4x-2)=90 | | (2x)+(3x)=135 | | 16-x-1=4x-2x | | p/18=20 | | -5+2k=7 | | 3-(2p+7)=5(1-p) | | 16x-3x-8=3x-2x | | -96=8k | | 16p2−8p+1=0 | | -8r-3=3r+41 | | 2x+13+8x-41=180 | | 8x-38=46-6 | | 7X-43=21o |